Performance analysis of data clustering algorithms using various effectiveness measures
نویسندگان
چکیده
Data clustering is a method to group the data records that are similar to each other. In recent days, researcher show significant attention towards the use of swarm based optimization algorithms to improve the performance of clustering process. This Performance analysis concentrates on the effectiveness of five different algorithms with respect to various distances metrics to find the effective algorithm among them. The algorithms used for comparison are K-means algorithm, Artificial Bee Colony (ABC) algorithm, Fuzzy C-Means (FCM) incorporated ABC (ABFCM) algorithm, K-means incorporated Artificial Bee Colony (ABK) algorithm and Bacterial Foraging Optimization algorithm (BFO). Among those algorithms, ABFCM and ABK algorithms are enhanced ABC algorithm in which the FCM and K-means operator are incorporated in the sc out phase of the traditional ABC algorithm respectively. In this paper, the performance of these algorithms are compared in terms of various distances metrics like dice coefficient, jaccard coefficient, beta index and distance index by varying the cluster sizes and number of iteration. Finally, from the experimental results it proves that the proposed algorithms ABFCM and ABK outperforms better when compared with the existing algorithms.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods
Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 13 شماره
صفحات -
تاریخ انتشار 2016